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A phase-diffractive optical element is designed to measure the topological charge of optical vortices. We use the
scalar diffraction theory to calculate the far-field diffraction patterns. The simulation results show that almost all
of the power of the incident beams is diffracted to the same diffraction order, and this approach is also effective
for multi-ring optical vortices. We upload this phase-diffractive optical element on the liquid crystal spatial light
modulator to do the experiment. The observed far-field diffraction patterns fit well with the simulation results.
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Optical vortices carrying orbital angular momentum
(OAM) such as the Laguerre-Gaussian (LG) beams and
the Bessel beams are widely used in a lot of fields, includ-
ing optical tweezers?, optical manipulation?, optical
trapping and guiding of cold atoms??, generating vector
beams?, quantum communication?, optical communica-
tions™2, etc. The eigenvalue of OAM in a single photon
is called the topological charge I. Optical vortices with dif-
ferent [ values are orthogonal to one another in the Hilbert
space, and the value of [ is unlimited in theory™. This
means optical vortices have the potential to increase
the capacity of communication systemsZY. Therefore,
measuring the topological charge [ is very important.

A number of techniques to detect the topological charge
of optical vortices have been reported22¥. Approaches
that utilize amplitude diffractive optical elements, includ-
ing composite fork shaped grating™¥ and triangular
slit22) are demonstrated. Methods such as the multipoint
interferometer, double-angular-slit interference!, Dam-
mann vortex grating? 2, Fourier transformation of inten-
sityZ2 tilted lens22Y, and plasmonic photodiodes?! are
also reported. Recently, our group designed a new kind of
grating with a gradually-changing-period to measure the
topological charge?. This method reduces the difficulty of
adjusting the optical system, and the diffraction patterns
of this grating are easily observed, which meets our de-
mand of the diagnostics of low-order single-ring optical
vortices. However, as for multi-ring optical vortices or
high-order optical vortices (Ref. [32] just accomplishes
the topological charge measurement of a single-ring opti-
cal vortex from —4 to +4), this method will not work very
well because of the low diffraction efficiency. In addition,
the gradually-changing-period grating is an amplitude
grating, which means we must use it after production.

On this account, we design a new kind of diffractive
optical element based on the gradually-changing-period

grating mentioned above. The element we demonstrate
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can be regarded as a phase grating. On one hand, this op-
tical element can modulate the phase of the incident light
beam to realize wavefront division and concentrate most
of the energy of the incident optical vortex on the same
diffraction order. On the other hand, we can upload the
hologram of this diffractive optical element on the liquid
crystal spatial light modulator (LC-SLM), which is very
easy to operate in practical measurement. In particular,
the phase element can realize the measurement of an op-
tical vortex with an arbitrary topological charge in theory.

The phase profile of the diffractive optical element can
be expressed as

bz, y) = 27 - frac(af by), 1)

where “frac” means taking the fractional part of a number.
Parameters a and b are two basic parameters, which are
related to the gradient coefficient of the optical element.
The diffractive optical element is shown in Fig. 1(a).
Now we will discuss how to determine the values of
parameters ¢ and b. Assuming that the maximum of
the y coordinates in the optical element is y; and the mini-
mum is ¥, the grating period on the location of y = y; is
N, on the location of y = yy is n, and N > n, as illustrated
in Figs. 1(b) and 1(c). The grating constant is a linear
function of y in this optical element. So we can get a
first-order linear equation set about parameters a and b,
{ N = a+ by, )
n = a+ bys,

and by solving Eq. (2) can we get the value of parameters a
and b.

The scalar diffraction theory and the fast Fourier trans-
form (FFT) algorithm are used to analyze the far-field
diffraction patterns when optical vortices are incident
in this diffractive optical element. The detection system
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Fig. 1. Phase profile of the diffractive optical element.

we design satisfies the paraxial approximation. Therefore,
we can use Fresnel diffraction to simplify the diffraction
integral formula. However, it may cause some problems
because Fresnel diffraction is not applicable in the calcu-
lation of the far-field diffraction, but it is good for the finite
propagation distance, and what we want is the far-field
diffraction patterns. So, we add a convex lens to the opti-
cal element to compensate for when we calculate the
diffraction result. The Fresnel diffraction integral can
be written as

U(z,y) = eXp ]kd // Uy (9, 9o)

-exp{;d[( S yo)j|}d$0dyo7
3)

where Uy(xy, yy) is the complex amplitude of the incident
beam, U(z,y) is the optical field behind the optical
element in the observation plane, d is the distance between
the optical element and the observation plane, 1 is the
wavelength, and k is the wave number. Equation (3)
can be simplified again with the help of the Fourier
transform®, which can be written as

U(e.3) = FH{P[Uo(an 0] - exo k(1 — 0]}
@

where F' and F~! are the Fourier transformation and the
Fourier inversion, respectively. Equation (4) allows us to
use the FFT to analyze the diffraction, and it will make
the calculation easier. Under the condition of paraxial
approximation, the phase profile of the spherical lens
can be written as

$2+y2

2f
where f is the focal length of the lens, which is equal to the
d in Eq. (4), so as to realize the calculation of the far-field

p(z,y) =k - ()

Fig. 2. Normalized intensity distribution of the incident optical
vortices and the simulated far-field diffraction patterns. (a), (b),
and (c) are the incident single-ring (radial index p = 0) optical
vortices with topological charge | = 1, [ = —1, and | = 2, respec-
tively. (d) and (e) are the incident multi-ring incident optical
vortices with topological charge [ =1 and [ = —1. (f), (g), (h),
(i), and (j) are the simulation results of the normalized intensity
distribution of the far-field diffraction when the optical vortices
shown in (a), (b), (¢), (d), and (e) propagate through the diffrac-
tive optical element, respectively. (k) and (1) are the 3D images of
the normalized intensity distributions of (c¢) and (h).

diffraction. Here we use LG mode as the incident optical
vortex. The LG mode is the single-ring optical vortex
when the radial index p=0. When p#0, it is the
multi-ring optical vortex. Assuming that the complex
amplitude of the incident optical vortex is G, then U,
can be expressed as
= Gexp(ip) - exp(ip). (6)
The far-field diffraction patterns can be obtained
when we plug Egs. (1), (5), and (6) into Eq. (4). The soft-
ware MATLAB is used here to help us to realize the
calculation of the above equations. In our simulation,
the basic parameters of the optical element are set as
N =04 mm and n = 0.2 mm. The waist radius of the
fundamental Gaussian mode is 1.5 mm. Figure 2 shows
the incident optical vortices and the far-field diffraction
patterns when the optical vortices propagate through
the optical element we design. The diffraction patterns
are similar to the Hermite-Gaussian (HG) modes. The
spot number of them is related to the absolute value of
the incident beams’ topological charge, which can be
expressed as (|| +p+1) - (p+1). Hence, |l| can be
written as
| =[W/(p+1)—(p+1)], (7)
where W is the number of spots. The orientation of the
spots (horizontal or vertical) is related to the sign of
the topological charge. The phenomena above mean that
this optical element can realize the measurement of the
topological charge. First, we can verify the radial index
p by detecting the incident optical vortex (the number
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Fig. 3. Two examples of the detecting procedure of our method.
(a) The case of a single-ring optical vortex with [ = +4. (b) The
case of a multi-ring optical vortex with | = —2.

of rings minus one is p). Second, the orientation of the
spots tells us the sign of the topological charge: vertical
means positive, and horizontal means negative. Third,
the number of spots tells us the absolute value of the topo-
logical charge (Eq. (7)). We list a couple of examples of the
measurement procedure of this diffracted optical element,
as shown in Fig. 3. Figure 2 also shows that almost all of
the power of the incident beams is diffracted to the same
diffraction order. This is different from the gradually-
changing-period grating of which just about 10% of the
incident power is diffracted to the first diffraction order
that we need?.

We build an experimental setup to measure the topo-
logical charge practically, as sketched in Fig. 4. The diam-
eter of the collimator is 3 mm, and the LLD’s output power
is about 20 mW. Two LC-SLMs by Holoeye are used here
to create the desired phase profiles. Their active area is
15.36 mm x 8.64 mm, the resolution nominal is 1920 x
1080 pixels and the pixel pitch is 8.0 pm. The LC-SLM
we use can be programmed in any desired phase profile
for horizontal linearly polarized monochromatic light.
So adding a polarized beam splitter (PBS) before SLM1
is necessary. Of course, the PBS here can be replaced
by a horizontal polarizer. In this experiment, SLM1 is used

SMF Col. PBS SLM1

i N | . !
SL\MZ/\ "‘
x\ m 0 oo

Fig. 4. Experimental setup to diagnose the topological charge of
the optical vortex. LD, laser diode; SMF, single mode fiber;
Col., collimator; L, convex lens.
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Fig. 5. Holograms of the spiral phase plate and the simulation
results of the generated LG modes. From (a) to (e) are the spiral
phase plates to generate the LG(_; mode, LGy; mode, LG;_;
mode, LG mode, and LGy, mode, separately. (f), (g), (h),
(i), and (j) are the simulation results of the far-field diffraction
patterns when the Gaussian beams propagate through the
holograms above.

0]

to generate an optical vortex. The computer-generated
holograms of the spiral phase plate are calculated, and
then uploaded to SLM1. When the Gaussian beam whose
wavelength is 1550 nm that is emitted by an LD is incident
at SLM1, the emergent light beams are LG beams. Figure 5
displays the holograms of different kinds of spiral phase
plates and their simulation results of far-field distributions
when the Gaussian beam propagates through them. The
phase-diffractive optical element is uploaded on SLM2 to
realize the measurement of the topological charge. An
infrared CCD camera whose spectrum range is 900—
1700 nm is placed at the focal plane of the convex lens,
and is used to observe the far-field diffraction pattern.
We upload nothing on SLM2 at first in order to detect
the incident optical vortex. After that, the hologram of
the phase grating we designed is uploaded, and the
far-field diffraction patterns are attained by an infrared
CCD camera.

Figure 6 displays the far-field diffraction patterns when
the single-ring optical vortices are incident. In each sub-
map, the first row is the incident optical vortices, the sec-
ond row is the simulation results of the far-field diffraction
patterns when the optical vortices in the first row are
incident, and the third row is the patterns observed by
the CCD camera in the experiment.

The condition of the multi-ring optical vortices is shown
in Fig. 7. In this case, the radial index p # 0. The incident
multi-ring optical vortices are the LG;; mode, LG
mode, LG;3 mode, LGy; mode, and LG,_; mode from
top to bottom, respectively.

We can easily find that the experimental results shown
in Figs. 6 and 7 fit well with the simulation results, which
strongly suggest that the diffractive optical element we
demonstrated can be used to diagnose the topological
charge. The incident optical vortices are diffracted by
the phase-diffractive optical element, and the far-field dif-
fraction patterns have the structure that is similar with
the HG modes. The topological charge of the arbitrary
single-ring or multi-ring optical vortices can be measured
very effectively. What we should do is to judge the
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Fig. 6. Experimental results of the incident single-ring optical
vortices. (a) The case of the optical vortices with a positive topo-
logical charge. (b) The case of the optical vortices with a negative
topological charge. In each submap, from top to bottom are the
incident optical vortices, simulation results, and experimental
results, respectively.
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Fig. 7. Experimental results of the incident multi-ring optical
vortices. From left to right are the LG;; mode, LG;_; mode,
LG;3 mode, LGy mode, and LG,_; mode, separately. From
top to bottom are the incident multi-ring optical vortices,
simulation results, and experimental results, respectively.
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orientation and the number of the spots in the far-field
diffraction patterns.

Compared with the other diagnostic methods of optical
vortices, the great improvement of this phase-diffraction
optical element is the detection of the multi-ring optical
vortices (the radial index p # 0), and the fabrication of
this element is unnecessary. We just need to upload the
hologram of the optical element on the LC-SLM, which
makes it more convenient in practice. It is available for
realizing the detection of optical vortices in a weak inten-
sity because almost all of the energy of the incident light is
diffracted to the same diffraction order. However, this
approach also has some limits. It can accomplish the
diagnostics of the arbitrary order of the single mode

optical vortices in theory, but it is not available for the
coaxial multiplexing optical vortices.

In conclusion, it is the first time to the best of our knowl-
edge for the demonstration of a method using a phase
optical element with a gradually-changing-period to
realize the diagnostics of the topological charge of optical
vortices. The method is very efficient and convenient,
which can be used in the fields of optical communications,
optical tweezers, and so on.

This work was supported by the National Basic
Research Program of China (973 program) under Grant
Nos. 2014CB340002 and 2014CB340004.
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